
!

Copyright 2016 Alonzo L. Hosford. All Rights Reserved. www.lonhosford.com
This is a Visual Step by Step Workbook and voice transcript for accompanying video for this portion of the
course. !

!

In this example you are creating a user interface that lets the user provide the amount.
Somewhat like the advertising slogan for the US company PriceLine.com. !!

!

Its not likely you will let your customers pick their price.
More likely you might find this example a useful template for gifting or donation forms. !!

!

Your example will provide predefined values for selection.
It will use a drop down menu for this. !!

!

You might allow the user to enter an amount that is not on the drop down menu.
But that means that you need to check that the value is a valid amount. !!

!

Open the checkout_simple.php file in an editor.
You are starting with the same Stripe code used for this section's example. !

!

Snippets are available to copy and paste if you want to follow along without typing.
Look for the guides in the top left corner. !!

!

This line sets a preset value in PHP.
You use this for a default preset amount when the form loads. !!

!

That preset amount will also have an override from the from the URL line.
The URL parameter is named amount.

!

URL parameters appear as a key entry in the PHP $_GET super global variable.
Then using the isset PHP function you can check if the URL amount parameter is present. !!

!

If it is set, then your code can drop into an if block where you use it.
In this case you will assign it to the $preset_amount variable value. !!

!

It is also a good practice to sanitize the value to assure that it is a valid number.
The PHP preg_replace function can use a regular expression that culls out all the characters that do not
represent a number.

!

You could also check to see if the amount is one of your preset values.
We are skipping that for this example.
You can add it for your own project practice.

!

Now for a small change to the description. !!!

!

Then you can remove the quantity and amount PHP variables from our base section example.
Also remove the $quantity variable from the $statement_descriptor expression. !!

!

The checkpoint_01 folder contains the PHP coding changes to this point.
You can use it to compare your work for lines 1 to 14. !!

!

Next add a subtitle at the end of the page head element.
This is a purely an arbitrary step to distinguish this example from others we have done. !!

!

Remove the form quantity description and also the quantity hidden element.
No quantity is used in this example. !!

!

Then add a container element for the user input fields.
You can use this to hide or show all the user input fields as needed.
For example after the checkout process begins. !

!

Following the description line add the input field for the user to enter the amount.
The id amount is already used in the Javascript for the Stripe checkout code. !!

!

But you have a duplicate id amount attribute value.
And it uses a PHP variable we no longer use.
Duplicate id attribute values create bugs in Javascript. !

!

You can reuse this hidden element to make the preset_amount available to Javascript.
So change both the id and the PHP variable for that. !!

!

Next add a select element for the preset values.
The id element is set for direct access in Javascript. !!

!

All but the first option value are the actual preset amounts.
The first option value helps the user recognize that they can enter their own amount. !!

!

The option content text aids the user in selecting the choices.
For example you might use words describing donation levels with the amount. !!

!

Then lets put both of these form elements into a p element. !!!

!

Time to demo the changes.
The checkpoint_02 folder contains the changes to this point.
You can use it to compare your work for lines 25 to 45. !

!

Save the file and load into a web browser.
Now you can use the new input fields. !!

!

At this point the select field does not update the amount input field.
Javascript is needed to get that done.
So lets work on it next. !

!

The first change to the Javascript file is to add a function that will set the input element.

!

The first line at first looks a bit awesome to dissect.
We can break it down.
Its job is to convert the function's amount argument to a two digit number.

!

First we are rounding the number to two decimal places.
That uses the Javascript Math object's round method.

!

The rounded number is passed to the Javascript parseFloat function.
The parseFloat function converts a string to a float number which means decimals are allowed.

!

The toFixed method can be used on Javascript numbers.
It gives you the formatting that would include trailing zero decimal values.

!

The next line in the function uses JQuery for setting the input value on the form.
In the HTML, the element has the id named amount.

!

The last line gives the input element focus so the user can edit without the extra step of selecting it.

!

Next add the clearAmount function.
You can add it after the setAmountTo function.
It empties the amount input element on the form and gives it focus.

!

After the clearAmount function add a JQuery change event handler for the preset-amounts select element.
This triggers when the selected option changes.

!

The change handler extracts the selected items option element value attribute.
The keyword this refers to the element triggering the event.
It is the select element and we can call the JQuery val method to get the selected option.

!

If the 'other' option is selected, you call your clearAmount function to empty the input field.

!

If not, you can populate the input field with the option value using the setAmountTo function we added.

!

Save the file.
The checkpoint_03 folder contains the changes to this point.
Now you are ready to test. !

!

Reload the checkout_simple.php file in the web browser.
You should be able to set the input field to any currency choice in the drop down menu. !!

!

If you select the Other option, then the input amount field is cleared.
In all cases the input focus moves to the Amount field. !!

!

Next you will work on using the preset amount.
Add these lines to the checkout_ui.js file.

!

Recall that the checkout_simple.php file has the PHP $preset_amount variable.
This is set as a static value or from the URL line.

!

Then in the HTML we make the $preset_amount PHP variable available to the DOM for access in
Javascript.

!

The first line that you added pulls that value into the Javascript presetAmount variable

!

Then you can call the setAmountTo function to initialize the amount input field.

!

Save the file.
The checkpoint_04 folder contains the changes to this point.
Then you can begin testing your work. !

!

Reload in the web browser.
The default value of 50 dollars will appear.
Also the amount field gets the input focus. !

!

Now add to the URL line the amount parameter equal to 100.
The reload the web browser.
The amount field gets pre-filled and focus again. !

!

You should notice the preset drop down menu could be set when there is a match with the preset.

!

If there is a match you can set to that value.

!

If there is not a match, you can show the other value.
So lets add the coding to get this done.

!

Here is the function that you can use.
Add after the call to the setAmountTo function where we absorb the preset amount from the form.

!

Careful we have two functions with almost the same name.
One is setAmountTo and the new one is named setAmountsTo.

!

The first line uses JQuery to select the option element with a value attribute equal to the function's
amount argument.

!

Then the length property tells you if JQuery matched a selection.

!

For a match, you use the amount in selected element's val method.
That will show the amount in the drop down menu on the form.

!

For all other cases, the select element is set to 'other'.
That will display the other option in the drop down menu.
Now you can just call this function using the form's preset value.

!

Add a line after the setAmountTo.
Insert the setAmountsTo function and use the same presetAmount variable.

!

Save the file.
The checkpoint_05 folder contains the changes to this point.
On to testing. !

!

Reload in the web browser without any URL line query.
The expected result is 50 dollars selected in the drop down menu.
The amount input field has that amount with two decimals and is the input focus. !

!

Add the amount equal to 100 on the URL line.
The drop down menu is expected to show 100 dollars selected.
The amount input field has focus with the 100 value formatted with two decimals !

!

Try a URL command line amount that is not in the drop down menu.
The value shows in the amount input field.
The drop down menu will show other. !

!

Lets make sure that the decimal formatting works if only one decimal is supplied on the URL line.
For example you could use 123.4 to test that. !!

!

And you could use 123.455 to test more than two decimals and rounding. !

!

Normally you and not the user would use the URL line to preset the form value.
You would create links from other pages, email campaigns or in social media posts for example. !!

!

Now on to moving the amount into the Stripe checkout process.
This is the checkout button click handler.

!

You are allowing the user to enter any value.
That presents issues such as not entering numbers or a number too small.
For example what if they enter 7 cents.

!

First add a number validation function.
It does look a bit complicated. !

!

First the argument value is supplied to the Javascript parseFloat function.
It will return a floating point number or the constant value NaN (not a number). !!

!

The parseFloat return value is passed to the Javascript isNaN function.
This will detect if the pareFloat function returned a NaN value.
The inverse of the isNaN function becomes the return value. !

!

But not so fast!
One more test is added in the expression using the isFinite Javascript function.

!

The isFinite function basically lets us know the number is one Javascript can use.
Now you are good to go.

!

Next add a minimum number for the amount.
Place that at the top of the script so it is easy to find later if you want to change it. !

!

Keep in mind that validating values on the client side is only for the convenience of the user.
It also helps reduce bad data going to your server.
You also need to check for data on the server and reject bad request values. !

!

The validation can be done in the checkout-btn element's click handler.
Start with creating an amount variable from the input element.
This way you can work with it before the Stripe form gets it. !

!

Next you can construct an if else code block to handle invalid and valid input amounts. !

!

The first block handles an invalid input amount.
It uses the isValidNumber function you added.
If false, the block is executed. !

!

The other possibility of a bad input amount is being below the minimum value.
The or operator adds that test by comparing to the minimumAmount variable added to the top of the
script. !

!

If those two tests for an invalid amount prove false, the else code block is processed.
Nothing new in the block yet. !

!

Ready to test?
Save the file.
Changes are found in the checkpoint_06 folder if you need to check your work. !

!

Reload with a clean URL without the amount parameter.
Click the Checkout button !!

!

And you will see the Checkout form.
This screen has a Stripe ready test customer.
You might need to create a test customer to speed up your testing. !

!

Cancel and choose a different amount. !!!

!

You should see amounts in the pay button.

!

Cancel and enter anything that is not a pure float number.
Clicking on the Checkout button will not open the Stripe checkout form. !!

!

Cancel and this time try a value below five dollars.
No Stripe checkout form should appear if you try to checkout. !!

!

You might want to provide user feedback why that happens.
The messaging can be added to the HTML.
So lets start there. !

!

In the checkout_simple.php file add these lines to display an error message and save.

!

The CSS checkout-message class hides the p element you added.
You will show that p element with Javascript when an input error occurs.

!

You can use the id attribute that gives you direct access to the paragraph.

!

Now for the code to show this error message.
It may appear a bit fancy, but it is all JQuery and a Javascript if else block.
So lets break it down.

!

The coding is all about the JQuery slideDown and slideUp animation methods.
Each time an amount input error occurs the message slides open.

!

If successive error attempts occur, you want it to slide close first and then back open.
This helps alert the user the error is repeated.

!

The first line does that for you by detecting if the error message is visible.

!

The next line uses the slideUp method to animate the error message closing.
The first argument to the slideUp method is duration.
It takes millisecond values and a small list of speed keywords.

!

The second argument is a call back function that is executed when the animation finishes.
Both of these arguments are optional.
But we need to the call back to prevent other lines of code happening before the slideUp animation
completes.

!

And that code is the slideUp animation method.
No arguments are needed for the slideUp method.
The default duration is 400 milliseconds. !

!

If the error message is not visible, you only need to show it.
So the else block calls the slideDown method without arguments. !

!

Just remember that the slideDown method does not animate if the element is already showing.
Same is true for all the JQuery methods that animate to a visible or hidden state.

!

Now you can turn your attention to opening the Stripe checkout form.
It appears to be working.
But here is a tweak that you might want to add.

!

This line animates the closing all form messaging elements.
That is done by applying the JQuery slideDown method to the checkout-message class.

!

That class is used on all form messaging elements. !

!

The original example set the Stripe Checkout form description by including a quantity.
This is found where the Stripe configuration object is set.
You need to remove the quantity from that expression.

!

Refactoring code always presents challenges that can stop you.
In this case Javascript would fail silently.
That would send you off into debugging.

!

And here is one more gotcha.
You no longer need to send the quantity to the backend for processing.
So remove it from the dataSend object and save your file.

!

And just as if you think you got quantity removed, you find it one more time in the checkout_charge.php
file.
You no longer are sending the quantity via AJAX so the PHP $_POST variable will not have it.
Remove it from the expression, then save your file.

!

Changes are found in the checkpoint_07 folder if you need to check your work. !!

!

Now you can try invalid amount inputs.
You should see the error message.
Your error message should slide in and out if you repeat similar amount errors followed by clicking the
Checkout button.

!

A last item that you may have noticed it that the input fields remain open as the checkout process begins.

!

This condition does not change after the checkout process completes.
This can create confusion for the user.
So you need to either disable the input fields or hide them.

!

You also replace them with printable receipt when the order is complete.
There are many possibilities depending on the nature of the need.
For this example, you can hide these fields.

!

You may recall adding the input-fields container.
It has the input elements that you want to hide as children.
You can hide this container during processing.
You can unhide it should something go wrong and you wish to provide a retry opportunity to the user.

!

Here is a place in the Javascript file that you can unhide the input-fields element reliably.
Add a slideUp method for the input-fields element.

!

The server program returns a success value.
When that is false you can show the input-fields element.
You do that in the AJAX .done callback function.

!

Save your work.
Changes are found in the checkpoint_08 folder if you need to check your work.

!

Now you can reload in the web browser.
Run some tests end to end for various scenarios.

!

There you have it from soup to nuts.
The basic Stripe coding remained the same.
Lots of details fell in the areas of the HTTP url line, PHP, JQuery and Javascript.

!

Copyright 2015 Alonzo L. Hosford. All Rights Reserved. www.lonhosford.com
This is a Visual Step by Step Workbook and voice transcript for accompanying video for this portion of the
course. !

